Индивидуальные катушки зажигания

На большинстве современных бензиновых двигателей применяются системы индивидуального зажигания. Данная система зажигания отличается от классического зажигания и от DIS-системы зажигания тем, что каждая свеча зажигания в такой системе обслуживается собственной (индивидуальной) катушкой зажигания. В зависимости от устройства сердечника, индивидуальные катушки зажигания делятся на два типа – компактные, и стержневые.

Типовые неисправности систем зажигания

Такие неисправности как обрыв высоковольтного провода или слишком высокое его сопротивление приводят к уменьшению мощности искрового разряда между электродами свечи зажигания. В случае обрыва высоковольтного провода, в месте обрыва образуется дополнительный искровой промежуток, включенный в цепь последовательно. В зависимости от величины этого дополнительного искрового промежутка, вследствие обрыва высоковольтного провода могут возникать пропуски воспламенения топливовоздушной смеси на некоторых режимах работы двигателя, может наблюдаться снижение разгонной динамики двигателя, снижение мощности двигателя. В критических случаях обрыв высоковольтного провода может привести к полному прекращению искрообразования между электродами свечи зажигания. Продолжительная работа двигателя с неисправной системой зажигания может привести к пробою высоковольтной изоляции элементов системы зажигания, а так же к повреждению силового транзистора коммутатора. В отдельных случаях возможны механические повреждения двигателя, системы очистки отработавших газов.

Система впрыска топлива

Методы впрыска топлива Существует несколько методов впрыска топлива: непрерывный впрыск топлива, точечный впрыск топлива, распределённый впрыск топлива и непосредственный впрыск топлива. Непрерывный впрыск топлива осуществлялся механическими и электромеханическими системами впрыска топлива. Остальные электронные системы впрыска топлива подают топливо строго дозированными порциями. Системы непрерывного впрыска топлива Наиболее распространёнными примерами непрерывного впрыска топлива являются механическая система впрыска топлива BOSCH K-Jetronic и электромеханическая система впрыска топлива BOSCH KE-Jetronic. Здесь топливо впрыскивается непрерывным потоком при помощи механических форсунок, распыляющих топливо пред впускными клапанами каждого цилиндра. Количество топлива регулируется путём изменения интенсивности потока впрыскиваемого топлива.

Датчик Холла. Hall Trigger

На валу распределителя зажигания закреплены шторки из ферромагнитного материала, вращающиеся вместе с валом. Количество шторок равно количеству цилиндров двигателя (встречаются системы зажигания с одной шторкой в распределителе зажигания, дополнительно оборудованные датчиком положения / частоты вращения коленчатого вала). Выходной сигнал датчика Холла может принимать один из двух уровней – высокий или низкий и зависит от наличия / отсутствия шторки в магнитном зазоре датчика. При отсутствии шторки в магнитном зазоре датчика, напряжение выходного сигнала датчика соответствует низкому уровню – не более 0,2 V. При прохождении шторки через магнитный зазор датчика, напряжение выходного сигнала датчика соответствует высокому уровню. Значение напряжения высокого уровня определяется поступающим на датчик опор. напряжением. Датчик генерирует синхроимпульсы синхронно прохождению шторок через магнитный зазор датчика. Форма осциллограммы напряжения выходного сигнала датчика Холла близка к меандру. Частота следования синхроимпульсов пропорциональна частоте вращения вала с ферромагнитными шторками.

Датчик положения коленчатого вала

Датчик положения коленчатого вала служит для определения положения и частоты вращения коленчатого вала, что необходимо для синхронизации системы зажигания и впрыска топлива. auto.schoollremonta.ru Датчик коленвала расположен напротив специального синхродиска, укреплённого на коленчатом валу. Синхродиск имеет 60 зубьев, 2 из которых отсутствуют. Начало 20-го (после выреза) зуба синхродиска совпадает с верхней мертвой точкой первого или четвертого цилиндров. Зазор между торцом датчика коленвала и зубьями диска составляет 0,8…1,0 mm. Сопротивление обмотки датчика составляет ~900 Ω. Датчик коленвала представляет собой обмотку из медного провода, внутри которой расположен намагниченный сердечник. Датчик коленвала генерирует синхроимпульсы напряжения синхронно прохождению зубьев синхродиска мимо торца датчика коленвала. Форма осциллограммы напряжения выходного сигнала датчика положения коленчатого вала близка к синусоиде. Амплитуда напряжения и частота следования синхроимпульсов пропорциональны частоте вращения двигателя. При работе двигателя на оборотах холостого хода, амплитуда напряжения синхроимпульсов должна быть не менее ±6 V. В режиме прокрутки двигателя стартером, амплитуда напряжения синхроимпульсов должна быть не менее ±0,5 V. В момент прохождения сектора синхродиска с вырезом мимо датчика, осциллограмма имеет следующий вид.

Датчик массового расхода

Датчик расхода воздуха служит для измерения количества (объёма или массы) потребляемого двигателем воздуха. Значение массы входящего воздуха, измеренное непосредственно датчиком массового расхода воздуха или рассчитанное блоком управления двигателем по его объему, является одним из базовых параметров в определении длительности открытия топливных форсунок. Датчик расхода воздуха устанавливается после воздушного фильтра перед дроссельной заслонкой. Со стороны входной части корпуса датчика расхода воздуха расположена сетка или ламинирующие соты, выравнивающие поток воздуха по всей площади воздухомера. Существуют различные конструкции датчиков расхода воздуха, но каждый из них можно отнести к одному из двух типов - датчики объёмного расхода воздуха, и датчики массового расхода воздуха. Датчики массового расхода воздуха (ДМРВ) более предпочтительны, так как измеряют непосредственно массовый расход воздуха (ДМРВ учитывает температуру и давление атмосферного воздуха), за счёт чего блок управления двигателем может более точно рассчитывать необходимое количество впрыскиваемого топлива.